
Package: pbmcapply (via r-universe)
September 2, 2024

Type Package

Title Tracking the Progress of Mc*pply with Progress Bar

Version 1.5.1

Author Kevin Kuang (aut), Quyu Kong (ctb), Francesco Napolitano (ctb)

Maintainer Kevin kuang <kvn.kuang@mail.utoronto.ca>

Description A light-weight package helps you track and visualize the
progress of parallel version of vectorized R functions
(mc*apply). Parallelization (mc.core > 1) works only on *nix
(Linux, Unix such as macOS) system due to the lack of fork()
functionality, which is essential for mc*apply, on Windows.

Depends utils, parallel

BugReports https://github.com/kvnkuang/pbmcapply/issues

URL https://github.com/kvnkuang/pbmcapply

License MIT + file LICENSE

RoxygenNote 6.1.1

Encoding UTF-8

Repository https://kvnkuang.r-universe.dev

RemoteUrl https://github.com/kvnkuang/pbmcapply

RemoteRef HEAD

RemoteSha c302c2e78d08864fb79e2134208777b76c4f4855

Contents
pbmclapply . 2
pbmcmapply . 3
progressBar . 4

Index 6

1

https://github.com/kvnkuang/pbmcapply/issues
https://github.com/kvnkuang/pbmcapply

2 pbmclapply

pbmclapply Tracking mclapply with progress bar

Description

pbmclapply is a wrapper around the mclapply function. It adds a progress bar to mclapply func-
tion.

Parallelization (mc.core > 1) works only on *nix (Linux, Unix such as macOS) system due to
the lack of fork() functionality, which is essential for mcapply, on Windows.

Usage

pbmclapply(X, FUN, ...,
mc.style = "ETA", mc.substyle = NA,
mc.cores = getOption("mc.cores", 2L),
ignore.interactive = getOption("ignore.interactive", F),
mc.preschedule = TRUE, mc.set.seed = TRUE,
mc.cleanup = TRUE, mc.allow.recursive = TRUE)

Arguments

X a vector (atomic or list) or an expressions vector. Other objects (including
classed objects) will be coerced by 'as.list'.

FUN the function to be applied to.

... optional arguments to FUN.

mc.cores see mclapply.
mc.style, mc.substyle

style of the progress bar. See progressBar.
ignore.interactive

whether the interactive() is ignored. If set to TRUE, the progress bar will be
printed even in a non-interactive environment (e.g. called by Rscript). Can be
set as an option "ignore.interactive".

mc.preschedule, mc.set.seed, mc.cleanup, mc.allow.recursive
See mclapply.

Examples

A lazy sqrt function which doesn't care about efficiency
lazySqrt <- function(num) {

Sleep randomly between 0 to 0.5 second
Sys.sleep(runif(1, 0, 0.5))
return(sqrt(num))

}

On Windows, set cores to be 1
if (.Platform$OS.type == "windows") {

pbmcmapply 3

cores = 1
} else {

cores = 2
}

A lazy and chatty sqrt function.
An example of passing arguments to pbmclapply.
lazyChattySqrt <- function(num, name) {

Sleep randomly between 0 to 0.5 second
Sys.sleep(runif(1, 0, 0.5))
return(sprintf("Hello %s, the sqrt of %f is %f.", toString(name), num, sqrt(num)))

}

Get the sqrt of 1-3 in parallel
result <- pbmclapply(1:3, lazySqrt, mc.cores = cores)
chattyResult <- pbmclapply(1:3, lazyChattySqrt, "Bob", mc.cores = cores)

pbmcmapply Tracking mcmapply with progress bar

Description

pbmcmapply is a wrapper around the mcmapply function. It adds a progress bar to mcmapply func-
tion.

Parallelization (mc.core > 1) works only on *nix (Linux, Unix such as macOS) system due to
the lack of fork() functionality, which is essential for mcapply, on Windows.

Usage

pbmcmapply(FUN, ..., MoreArgs = NULL,
mc.style = "ETA", mc.substyle = NA,
mc.cores = getOption("mc.cores", 2L),
ignore.interactive = getOption("ignore.interactive", F),
mc.preschedule = TRUE, mc.set.seed = TRUE,
mc.cleanup = TRUE)

Arguments

FUN the function to be applied in parallel to ...

... arguments to vectorize over (vectors or lists of strictly positive length, or all of
zero length).

MoreArgs a list of other arguments to FUN.

mc.cores see mcmapply.
mc.style, mc.substyle

style of the progress bar. See progressBar.

4 progressBar

ignore.interactive

whether the interactive() is ignored. If set to TRUE, the progress bar will be
printed even in a non-interactive environment (e.g. called by Rscript). Can be
set as an option "ignore.interactive".

mc.preschedule, mc.set.seed, mc.cleanup
See mcmapply.

Examples

A lazy sqrt function which doesn't care about efficiency
lazySqrt <- function(num) {

Sleep randomly between 0 to 0.5 second
Sys.sleep(runif(1, 0, 0.5))
return(sqrt(num))

}

On Windows, set cores to be 1
if (.Platform$OS.type == "windows") {

cores = 1
} else {

cores = 2
}

A lazy and chatty sqrt function.
An example of passing arguments to pbmcmapply.
lazyChattySqrt <- function(num, name) {

Sleep randomly between 0 to 0.5 second
Sys.sleep(runif(1, 0, 0.5))
return(sprintf("Hello %s, the sqrt of %f is %f.", toString(name), num, sqrt(num)))

}

Get the sqrt of 1-3 in parallel
result <- pbmcmapply(lazySqrt, 1:3, mc.cores = cores)
chattyResult <- pbmcmapply(lazyChattySqrt, 1:3, MoreArgs = list("Bob"), mc.cores = cores)

progressBar Progress bar with the estimated time to completion (ETA).

Description

This is an extended version of the txtProgressBar function with the estimated time to comple-
tion (ETA). Please refer to that for documentation (help(utils::txtProgressBar)). The origi-
nal utils::setTxtProgressBar can be used to update the bar. Use help(setTxtProgressBar,
"utils") to get help about the original function.

Usage

progressBar(min = 0, max = 1, initial = 0, style = "ETA", substyle = NA,
char = "=", width = NA, file = "")

progressBar 5

Arguments

min, max, initial
see txtProgressBar.

style style of the progress bar - see ’Details’.

substyle substyle of the progress bar - only needed when style is set to certain value (see
’Details’).

char, width, file
see txtProgressBar.

Details

When style = "txt", it performs exactly the same as the original txtProgressBar. In this case,
substyle shall be treated as the style in the original txtProgressBar. Please refer to the ’Detail’ of
txtProgressBar for the meanings of substyles.

When style = "ETA", it shows a progress bar with the estimated time to completion (ETA). Substyle
is not used in this case. However, when running in a terminal and the width of the terminal windows
is smaller than 40 characters, the progress bar will not be displayed.

Value

An object of class "txtProgressBar".

Note

Code derived from library pbarETA (https://github.com/franapoli/pbarETA) by Francesco Napoli-
tano <franapoli@gmail.com>.

See Also

txtProgressBar

Examples

Test function
testit <- function(x, ...)
{

pb <- progressBar(...)
for(i in c(0, x, 1)) {

setTxtProgressBar(pb, i)
}
close(pb)

}

Txt progress bar
testit(sort(runif(10)), style = "txt", substyle = 3)

ETA progress bar
testit(sort(runif(10)), style = "ETA")

Index

mclapply, 2
mcmapply, 3, 4

pbmclapply, 2
pbmcmapply, 3
progressBar, 2, 3, 4

txtProgressBar, 5

6

	pbmclapply
	pbmcmapply
	progressBar
	Index

